Application of Robust Sliding Mode Control to Uncertain Power System Stability
نویسندگان
چکیده
Consider load frequency control of a power system with the communication delay and apply the sliding mode controller to this uncertain power system. The delay from the communication network is assumed to be constant time-delay type. The delay in two areas is assumed to be same. The modern power systems with industrial and commercial loads need to operate at constant frequency with reliable power. The goals of the LFC problem are to maintain constant frequency in a multi area interconnected power system. The time delay dependent stability analysis presented here, to ensure robust stability of uncertain time delay system is used to determine the upper bound of time delay for which the power system is robustly stable. Then the sliding surface is designed and the reaching mode control law is applied. The uncertain power system model with communication delay is controlled with two control strategies, namely 1) Equivalent Control Law and 2) State Feedback Control Law. Once the trajectories reach the surface, the control is switched to second control action.
منابع مشابه
Second Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملDistributed Nonlinear Robust Control for Power Flow in Islanded Microgrids
In this paper, a robust local controller has been designed to balance the power for distributed energy resources (DERs) in an islanded microgrid. Three different DER types are considered in this study; photovoltaic systems, battery energy storage systems, and synchronous generators. Since DER dynamics are nonlinear and uncertain, which may destabilize the power system or decrease the performanc...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملTracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit
Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014